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INTRODUCTION: Chemical modulation of pro-
tein function is an important experimental ap-
proach to illuminate biological mechanisms
and represents the most frequently used strat-
egy to treat humandisease.Nevertheless, around
80% of the human proteome lacks annotated
small-molecule ligands, thus leaving many pro-
teins, including validated disease targets, out-
side the reach of mechanistic elucidation and
therapeutic innovation.

RATIONALE: To close this gap, unbiased ap-
proaches to advance ligand discovery are ur-
gently needed. We set out to determine the
proteome-wide binding preferences of more
than 400 small-molecule fragments through
a chemoproteomics strategy that is based on
treatment of intact cells. With these data at
hand, we aimed to (i) identify hundreds of

fragment-protein interactions and advance
selected fragments toward cell-active ligands,
(ii) leverage machine learning (ML) binary
classifiers to develop models to predict small-
molecule behavior in native biological systems,
and (iii) build an interactive open-source in-
terface to empower the broad exploration of
the data and of all predictive models.

RESULTS: Through this quantitative chemo-
proteomics strategy, we experimentally deter-
mined the interactome of 407 small-molecule
fragments. This led to the identification of
47,658 discrete fragment-protein interactions
involving more than 2600 proteins, of which
86% previously lacked any annotated ligand.
To provide evidence for the translational po-
tential of these starting points, we advanced
various hits toward elaborated fragments.

With focused synthetic efforts, we developed
ligands that (i) engage the E3 ligase adaptor
protein DDB1, (ii) functionally block the
human equilibrative nucleoside transporter
SLC29A1 (hENT1), or (iii) selectively inhibit
a subset of cyclin dependent kinases (CDKs),
including the orphan CDK16. In addition to
advancing individual fragment-protein hits,
we leveraged the depth of the global dataset
to develop an ML framework to build models
that can predict how fragments interact with
native proteins on a proteome-wide scale. This
framework included inference of quantitative
fragment interactomes, which enabled us to
predict to howmany proteins a given fragment
will bind and whether the bound proteins
themselves are chemically broadly accessible
or otherwise typically refractory to small-
molecule ligands.Moreover,MLmodels allowed
us to capture and predict qualitative inter-
actome signatures. This made it possible for
us to investigate and predict whether fragments
tend to interact with subsets of proteins of
coherent function, such as transporters or RNA-
binding proteins. Likewise, ML models allowed
us to analyze and predict whether fragments
tend to interact with groups of proteins that
reside in defined subcellular localizations or
compartments, such as lysosomes or mitochon-
dria, which can be indicative of intracellular
fragment partitioning and accumulation. Last,
we have also provided a platform to develop
bespoke ML models that are based on a user-
defined input of target proteins, and hence
enable the prediction of fragment binding to
a custom set of proteins.

CONCLUSION: Our large-scale chemical proteo-
mics survey led to the identification of hun-
dreds of fragment-protein interactions that
are poised for future exploration and chemi-
cal optimization. Moreover, we found that the
generateddata is amenable toML-basedmodels
that enable us to predict how chemicalmatter
interacts with native proteomes in intact cells
by using their chemical structure as input. To
maximize the practical use for the scientific
community, all interactomes, enrichment tools,
andMLmodels have beenmade publicly avail-
able for exploration through a web-based ap-
plication (https://ligand-discovery.ai). Collectively,
these data and tools should form a resource to
interpret fragment-binding data and expedite
ligand discovery efforts.▪
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Schematic representation of the ligand discovery approach. Chemoproteomics was used to assess
407 small-molecule fragments. Hundreds of fragment-protein interactions were identified as starting
points for probe development. System-level analyses coupled to machine learning enabled prediction of
fragment binding and behavior in living cells. An interactive web resource has been provided for data
exploration, which also allows the generation and application of bespoke predictive models.
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Chemical modulation of proteins enables a mechanistic understanding of biology and represents the
foundation of most therapeutics. However, despite decades of research, 80% of the human proteome
lacks functional ligands. Chemical proteomics has advanced fragment-based ligand discovery toward
cellular systems, but throughput limitations have stymied the scalable identification of fragment-protein
interactions. We report proteome-wide maps of protein-binding propensity for 407 structurally diverse
small-molecule fragments. We verified that identified interactions can be advanced to active chemical
probes of E3 ubiquitin ligases, transporters, and kinases. Integrating machine learning binary classifiers
further enabled interpretable predictions of fragment behavior in cells. The resulting resource of
fragment-protein interactions and predictive models will help to elucidate principles of molecular
recognition and expedite ligand discovery efforts for hitherto undrugged proteins.

C
hemical probes provide means to mod-
ulate protein function that are comple-
mentary to genetic perturbations (1). The
impact of small molecules on biological
circuits is immediate, thus facilitating the

delineation of causality (2, 3). Moreover, chem-
ical probes enable dose-resolved modulation,
and their effect can transcend antagonism and
agonism, for instance by stabilizing protein-
protein interactions to generate gain-of-function
effects (2, 4). Chemical modulation of protein
function has historically represented the back-
bone ofmostmedicines; despite the rise of other
modalities, most Food andDrugAdministration
(FDA)–approved drugs are small molecules (5).
However, although the importance of smallmol-
ecules is undeniable, around 80% of all human
proteins still lack chemical ligands, motivating
community-wide ligand discovery efforts (6, 7).
The paucity of chemical probes can be ratio-

nalized in part by limitations intrinsic to fre-

quently used discovery strategies. Target-centric
high-throughput screens (HTS) enable the ex-
ploration of large (~106) compound libraries but
are frequently performed in reductionistic con-
ditions. Phenotypic drug discovery addresses
these shortcomings but depends on often time-
consuming target-identification strategies (8).
Fragment-based ligand discovery (FBLD) is an
orthogonal strategy that has been successfully
employed to overcome limitations of HTS (9).
Smaller libraries (~103) of moderate–molecular
weight (MW <300 Da) fragments can reveal
ligand-efficient starting points for subsequent
medicinal chemistry campaigns. Given the
low affinity of fragment hits, FBLD has, until
recently, been confined to in vitro setups (10).
However, pioneering work has outlined the
feasibility of conducting FBLD in native bio-
logical systems by coupling cellular-fragment
treatment with unbiased chemoproteomics.
Initial efforts predominantly focused on elec-
trophilic fragments (11–15). More recently, the
concept has been expanded to map reversible
fragment-protein interactions. This has been
achieved by embedding photoreactive and
bioorthogonal reporter groups into “fully
functionalized fragments” (FFFs) to facilitate
target capture (16). Seminal work by Parker
and Cravatt has demonstrated that reversible
ligand-protein interactions can be detected on
previously unliganded proteins (16). Although
selected examples could be advanced to cell-
active probes, the narrow set of 10 to 20 pro-
filed fragments can complicate the separation
of specific ligand-protein pairs from promis-

cuous interactors resulting from labeling bias-
es (17, 18).
In this study, we set out to perform a large

cellular FBLD screening campaign, aiming to
address three points. First, we needed to see
sufficient signal to confidently discern back-
ground from genuine fragment-protein inter-
actions (17, 18). Second, andmost critically, by
mapping the proteome-wide interactome of
hundreds of ligands, we wanted to provide
actionable chemical starting points to target
thousands of proteins lacking annotated li-
gands. Last, we intended to leverage the dataset
to identify, through factorization of the chemo-
proteomicsmatrix, patterns of smallmolecule–
protein interactions and to enable machine
learning (ML)–based predictions of target
classes and cellular behavior of untested frag-
ments. These screening results and ML clas-
sifiers jointly constitute a publicly available,
interactive resource (https://ligand-discovery.ai)
to identify small molecules given a protein tar-
get or to predict general interaction properties
and potential interactome patterns given a
small molecule.

Global analysis of large-scale
fragment profiling through
quantitative chemoproteomics

To determine the inventory of proteins that can
be liganded with a set of fragments (“ligand-
ability maps”) at scale, we adapted previously
published approaches and designed a library
of 407 FFFs that features a diazirinemoiety as
the photoreactive element, as well as an alkyne
handle as the bioorthogonal reporter group
(16). This set of compounds was selected from
a reference library of ~6,000 FFFs, ensuring
that they cover a broad chemical space and
drug-like properties (Fig. 1, A and B, and fig.
S1A). To optimally capture structural and phys-
icochemical properties of our FFF collection
and to facilitate ensuing data analysis tasks, we
subsequently developed a bespoke FFF-specific
descriptor. The descriptor is based on a dense
numerical representation of the fragments at-
tached to the diazirine and alkyne groups and
trained across a library of ~300,000 FFF com-
pounds [supplementary materials (SM), mate-
rials and methods].
To comprehensively determine protein inter-

actors of a given fragment, human embryonic
kidney–293T (HEK293T) cells were treated
with 50 mM of each FFF, followed by ultra-
violet (UV) crosslinking to covalently capture
otherwise-reversible binding events. After-
wards, cells were harvested, washed with cold
phosphate-buffered saline, lysed, and clicked
with biotin-azide for subsequent streptavidin
enrichment and several stringent washing steps
(19). Protein identification was performed by
means of on-bead trypsin digestion coupled to
mass spectrometry (MS)–based quantitative
proteomics with isobaric tags. Implementation
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Fig. 1. Establishment and analysis of large-scale ligandability portraits of
fully functionalized fragments (FFFs). (A) Chemical space covered by the
selected 407 fragments. A two-dimensional (2D) uniform manifold approxima-
tion and projection (UMAP) visualization of the 512-dimensional FFF descriptor is
shown, computed for the ~6000 FFFs from the stock Enamine collection.
Screened fragments are highlighted and colored by molecular weight (MW). MW
is calculated excluding the diazirine (DAz) and alkyne regions that constitute the
constant region fragment (CRF). Chemical structures of eight exemplary FFFs
are shown. (B) Molecular properties of the selected compounds (excluding the
CRF region): MW, Wildman-Crippen calculated LogP (cLogP), hydrogen bond

acceptors and donors (HBA, HBD), number of rings, and number of rotatable
bonds (Rot. Bonds). (C) Schematic depiction of the fragment screening
workflow. LC-MS/MS, liquid chromatography tandem mass spectrometry; m/z,
mass/charge ratio. (D) Proportion of enriched fragment-protein interactions with
respect to all detected ones (orange), enriched proteins with respect to all
detected (blue), and fragments with at least one enriched protein with respect to
all assayed FFFs (purple). (E) Coverage of the human and HEK293T proteomes.
Proportion of enriched (hit) proteins found in at least one fragment are shown
in red; remaining proteins that were detected at least once, but not enriched, are
shown in blue. (F) Proteome-wide view of the liganded proteome. ESM-1b
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of TMTpro 16plex reagents (TMT, tandemmass
tag) enabled the parallel interactome determi-
nation of seven fragments in duplicate, compar-
ing protein enrichment with a control reference
fragment (CRF; methyl) serving as a null dia-
zirine control (Fig. 1, A and C; see SM, mate-
rials and methods for details) (20). In our
analysis, we detected a total of 5683 distinctive
proteins, 2667 (47%) of which are significantly
enriched at least fivefold [log2 fold change
(FC) >2.3] over the CRF background control,
thus resulting in a total of 47,658 fragment-
protein interactions. Together, these hits cover
93% of the screened fragments and a consid-
erable proportion of the expressed proteome
inHEK293T cells (Fig. 1, D andE, and fig. S1B).
We next asked to what extent our data cover
proteins that have different functional and
clinical classifications. Projecting all fragment-
enriched targets over a display of the human
proteome indicates a broad coverage of various
protein families, including known ligandable
protein families, such as enzymes. Our study
also revealed several other protein clusters that
are traditionally challenging to liganddiscovery
efforts, including phosphatases and small gua-
nosine triphosphatases (GTPases) (Fig. 1F).
Last, we stratified targets by using as a refer-
ence the “Target Development Level” classi-
fication of the Illuminating the Druggable
Genome (IDG) program (21). Although we
identified chemical starting points for proteins
that are targeted by clinically approved drugs
and for other previously ligandedproteins (Tclin
and Tchem IDG categories, respectively; Fig. 1G)
(21), our survey also revealed a remarkable
number of targets (2305) that previously
lacked association with any known chemical
matter (Tbio and Tdark; Fig. 1G). Accordingly,
in addition to covering druggable protein classes
such as kinases, or other enzymes in general,
most protein targets liganded by our fragments
fell into categories that are underrepresented,
such as scaffolding and adapter proteins or
RNA splicing factors (Fig. 1H and fig. S1C).
Taken together, the proteome-wide binding
analysis of more than 400 FFFs has revealed
thousands of fragment-protein interactions
that can be explored through our interactive
resource (https://ligand-discovery.ai).

Quantitative differences in
fragment interactomes

To increase confidence that individual fragment-
protein interactions represent actionable starting

points for ligand discovery and to determine
unspecific binding resulting from labeling biases,
we next investigated differences in fragment and
protein promiscuity. We noticed that fragments
spanned a broad range of promiscuity, with
some interacting with several hundred pro-
teins, whereas others displayed a much more
selective target profile (Fig. 2A). We confirmed
the selectivity profile of seven fragments through
in-gel fluorescence scanning, thus ascertaining
that differential fragment promiscuity is ob-
served also in proteomics-independent read-
outs (Fig. 2B). We found that in agreement
with previous results, protein enrichment was
strictly dependent on UV cross-linking, thus
confirming that the identified fragment-protein
interactions were of reversible nature (16). To
eliminate potential protein contaminants from
our interactomes, we compared our results
with previous studies that investigated the
labeling bias of diazirine-based photocross-
linkers (17, 18). We surmised that the scale of
our survey should allow us to expand the
knowledge of background labeling biases that
may be introduced by the diazirine reporter
group. Indeed, among the 50 most frequently
enriched proteins in our dataset, less than half
hadpreviously beenassociatedwith background
labeling (Fig. 2C) (17, 18). Corroborating previous
observations, we found that membrane and
mitochondrial proteins were among the fre-
quently identified proteins globally (Fig. 2D)
(18). Overall, the scale of our analysis allowed
us to establish a rich labeling background,
which can help to inform choice of suitable
starting points for FBLD. To maximize the
practical utility for the community, we added
a functionality to our web resource that allows
users to cross-reference their independently
generated chemoproteomics data to differen-
tiate specific from unspecific interactors.
For our own selection of follow-up fragment-

protein interactions, we initially processed the
data by removing all proteins liganded by 10
or more fragments. This yielded a sparse and
modular fragment-protein interactome network
(Fig. 2E). From this pruned interactome, we
wanted to select three diverse fragment-
protein interactions for further exploration
and optimization. To this goal, we wanted to
pick three chemically distinct fragments tar-
geting proteins that span a range of pharma-
cological knowledge depth, from Tclin to Tbio
(Fig. 2F). To focus on strong but specific inter-
actions, we derived an interest score (iScore)

that was defined as an enrichment ratio of an
interaction over the promiscuity of the cor-
responding fragment and protein. We focused
on the top 5% of interactions (Fig. 2F). On the
basis of these criteria, we selected three frag-
ments for validation, follow-up studies, and
ensuing chemical optimization, namely C391,
C186, andC27, involving interactionswithCDK2
and CDK16, DDB1, and SLC29A1, respectively.
We first aimed to validate these interactions

in independent experiments at lower frag-
ment concentrations (25 mM instead of 50 mM).
Next, we wanted to assess whether these in-
teractions are chemically actionable. To ad-
dress this, we sought to identify FFF analogs
(“fragment elaborates”) that feature the vari-
able fragment region and additional substitu-
tions but lack the constant region. To assay
fragment elaborates, we tested them in com-
petitive cellular binding assays with the FFF
using proteomics and, where available, also in
functional experiments.

Selective fragment-protein interactions can be
advanced into chemical probes
C391 selectively engages a subset of cyclin
dependent kinases

To benchmark our approach, we selected a
target class that provides facile access to re-
combinant binding and inhibition data. We
thus followed up on the interactome of frag-
ment C391, a thiophene-pyrazole that elicited
pronounced (log2 FC >4) and selective enrich-
ment of CDK1, CDK2, CDK5, CDK9, and
CDK16 (iScore of 2.14 and 2.16 for CDK2 and
CDK16, respectively) (Fig. 3A). Closer examina-
tion revealed that 11 other CDKswere detected
in the respective pulldown, yet most of them
failed to be significantly enriched (Fig. 3B).
This finding prompted us to investigate wheth-
er this scaffold would display a promiscuous
pan-kinase binding. For this purpose, and to
enable the investigation of other fragments in
a similarmanner, we developed an interactome–
enrichment analysis functionality, which is
available through our web resource. This tool
takes inspiration from classic gene set enrich-
ment analysis (GSEA) but is geared to detect
enrichment of certain annotation terms within
the interactome of a particular fragment of
interest (22). Annotation categories include
cellular localization and protein families, among
others (SM, materials and methods). Corrobo-
rating a bias toward liganding CDKs, we de-
tected a significant enrichment of the CDK

sequence embeddings were calculated for the functionally annotated human
proteome, followed by 2D UMAP projection and k-means cluster analysis. Clusters in
the 2D map are highlighted with a qualitative color scale; proteins with no clusters
assigned are removed. Black dots represent proteins found in at least one ligand
interactome, i.e., hit proteins. (Insets, right side) Example clusters of functionally
coherent proteins. Black dots again mark hit proteins. Example proteins are
indicated with the number of ligands in parentheses. AGC and GMGC refer to kinase

groups. (G) Ligandability of hit proteins. Enriched proteins stratified by IDG
(Illuminating the Druggable Genome) categories (Tclin, Tchem, Tbio, and Tdark).
(H) Protein-family coverage by approved drug targets (purple), liganded proteins
according to external databases (blue), and enriched proteins in our screen
(orange). In the left plot, size of the dot is proportional to the number of proteins.
Correspondingly, the right panel shows cumulative counts as a bar plot. For a
more granular view, see fig. S1C. GPCR, G protein–coupled receptor.
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kinase subfamily in the interactome of C391.
By contrast, no enrichment was observed
when investigating the larger kinase super-
family (Fig. 3C). In response to this finding, we
designed a small set of 10 chemicals elabo-
rated around the C391 core, aiming to find
compounds that could outcompete the binding
of the FFF C391 to the enriched CDKs. To
maintain an unbiased readout over the entire
FFF interactome, we again opted for a multi-
plexed, MS-based, proteomics-based setup that
allows us to recapitulate the initial interactome
of C391 (comparison between CRF and the
respective FFF), while allowing for assessment
of the competitive binding pattern of the top
six elaborates (fig. S2A), chosen by their pre-
dicted permeability. In agreement with the
initial fragment screening, we again enriched
a set of CDKs with the FFF C391. The different
elaboratedmolecules displayed varied degrees
of CDK competition, with C391-E6 showing
the most pronounced competition (Fig. 3, D
and E). Consistently, we could validate bind-
ing of C391-E6 to recombinant CDK2 and
CDK16 (LanthaScreen, ThermoFisher Scientific;
fig. S2B and table S6). C391-E6 also potently

inhibited the catalytic activity of CDK2 (Z’-LYTE
assay, Thermo Fisher Scientific; fig. S2C),
which is supported by molecular docking that
reveals binding to the active site (fig. S2D).

C186 is a competitive binder of DDB1

Cullin RING E3 ubiquitin ligases (CRLs) are at
the center of attention of targeted protein deg-
radation, a pharmacology that is based on
small molecules that induce proximity be-
tween a protein of interest (POI) and an E3
ligase, thus prompting POI degradation (23, 24).
We thus looked for fragments binding to CRL
components (25–29). We observed a strong
(log2 FC >4) enrichment of the CRL adapter
protein DDB1 by the FFF C186. This enrich-
mentwas highly selective because C186was the
only profiled fragment that displayed statisti-
cally significant DDB1 enrichment (iScore of
2.14; Fig. 3F and fig. S2E). In line with a direct
binding event, we could validate binding of
C186 to recombinant DDB1 by in-gel fluores-
cence scanning (Fig. 3G). As before, we turned
to additional chemoproteomics experiments to
identify C186 derivatives capable of competing
DDB1 from the FFF C186, revealing C186-E5 as

the strongest (but also most promiscuous)
competitor (Fig. 3, H and I, and fig. S2, E and F).
Competitive DDB1 engagement by C186-E5 was
further validated with Western blot analysis
(fig. S2G). We and others have previously
shown that small molecules can induce the deg-
radation of cyclin K by recruiting the CDK12/
13:CycK complex directly to DDB1, thus pro-
viding evidence that direct recruitment to
DDB1 can offer a means to targeted protein
degradation (30, 31). Future experiments will
address whether C186 binding to DDB1 has
similar neomorphic features, or if C186 elab-
orates couldbe furnished into aDDB1-recruiting
heterobifunctional degrader, as has recently
been shown for a covalent fragment (32).

Discovery of an SLC29A1 inhibitor

The solute carrier (SLC) superfamily represents
the biggest family of transporters (>400 mem-
bers), and approximately one-quarter of SLCs
are associated with human disease (33). Al-
though certain SLCs are targets of approved
drugs, the majority remain poorly studied (34).
Individual SLCs are among the frequently
enrichedproteins in our dataset (Fig. 2, C andD)
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Fig. 2. Quantitative determination of fragment interactomes. (A) Number of
enriched proteins per fragment. Fragments are ranked by protein counts. (B) In-
gel fluorescence assay displaying fragments spanning the range of promiscuity
shown in (A). Bands with preferential labeling by a certain fragment are labeled
with red asterisks. (C) Top 50 proteins, according to the number of fragments.
“Labeling-bias” proteins reported in Kleiner et al. and West et al. (17, 18) are
highlighted in red. Proteins identified only in West et al. (18) are shown in orange.
(D) Cellular localization analysis. Proteins are classified in broad categories,
namely membranes, mitochondria, cytoplasm, and nucleus. (Left) Promiscuous
proteins (prom. prot.; higher number of fragments) tend to localize in
membranes. (Right) This enrichment is quantified with a hypergeometric test
under a promiscuity cutoff of 50 fragments. Membrane proteins are four times
as likely to be promiscuous. (E) Fragment-protein interactome laid out after

filtering out proteins with 10 or more fragments. Proteins are shown in red and
fragments in blue. (F) Selected follow-up fragment-protein interactions. (First
row) Proteins are colored by IDG category (Tclin, Tchem, and Tbio). (Second
row) The left plot sorts proteins by their sequence similarity (Prot. by seq.),
displayed in 1D after hierarchically clustering the 2D coordinates of Fig. 1F and
capturing the leaf order of the dendrogram. Likewise, the right plot sorts
fragments by chemical structure (Frag. by struct.) according to a hierarchical
clustering of Fig. 1A coordinates. Widespread lines in both plots show diversity of
selected proteins and fragments. (Third row) An interest score (iScore) for each
interaction is defined as the ratio of the median-corrected log2 FC of each
interaction over the geometric mean of the sum of enrichment scores of the
fragment and the protein. Interest scores are power-transformed. High interest
scores indicate strong and specific enrichment signals.
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Fig. 3. Identification and elaboration of fragment hits for CDKs and DDB1.
(A) (Left) Volcano plot related to FFF C391. Hit proteins are highlighted according
to our hit-selection criteria (SM, materials and methods). (Right) Enriched (hit)
proteins are stratified by their level of specificity, measured as the number
of interacting FFFs (counts). (B) Cyclin dependent kinases (CDKs) organized in a
circular plot according to a high-level phylogeny. The plot shows CDKs
enriched in C391 (red), CDKs detected but not enriched (orange), remaining
CDKs expressed and measured in HEK293T (blue), and the remaining CDKs in
the human proteome (gray). (C) Protein set enrichment analysis of CDKs
(upper) and the kinase superfamily (lower). Proteins are ranked by log2 FC.
(D) Competition experiment for elaborate C391-E6. x axis shows the log2 FC
(right to left); y axis shows the competition FC measured with respect to the FFF.
Enriched and competed proteins are highlighted in light purple. Enriched but not

competed proteins are highlighted in red. (E) Heatmap representing the top
50 proteins highlighted in the competition experiment. The first row corresponds
to the FFF (i.e., the fragment with the CRF). The rest correspond to the derivatives.
(Top left) The brown scale and size of the first row denotes enrichment log2 FC
of the FFF. (Top right) The blue scale and size of the other rows indicate the
elaborate competition FC. Small purple and red dots at the top show proteins
highlighted in (D). (F) Volcano plot for C186, analogous to (A). (G) Recombinant
purified DDB1 or DDB1-CRBN was incubated with the indicated concentration of
CRF or C186-F. Photocrosslinking and click reaction with a picolyl-azide-sulfo-Cy3
as fluorophore followed by in-gel fluorescence scanning confirmed direct interaction
between C186-F and DDB1. DMSO, dimethyl sulfoxide. (H) Competition
scatterplot for C186, analogous to (D). (I) Competition heatmap for C186,
analogous to (E).
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(17, 18). We reasoned that, when properly con-
trolled for, fragments that selectively bind to
SLCs would nevertheless provide suitable start-
ing points for ensuing ligand optimization. We
decided to test this hypothesis by investigating
fragment C27, which we found to strongly
(log2 FC >3.5) and selectively enrich the human
equilibrative nucleoside transporter SLC29A1
(hENT1), which is involved in cellular uptake
of purine and pyrimidine nucleosides (iScore
of 2.04; Fig. 4A) (35). It is also a target of clin-
ical relevance including cardiopathy, renal dis-

orders, and hypertension (36). In addition, a
recent study highlighted that SLC29A1 inhibi-
tion also increases extracellular levels of inosine,
which forms the molecular basis in brown
adipose tissue differentiation (37). Selective
enrichment of SLC29A1 by C27 hence pro-
vided motivation to identify functional elabo-
rates through competitive chemoproteomics
experiments as described before. First, we con-
firmed the enrichment of SLC29A1 by the FFF
C27 over CRF and also discovered that several
analogs, including C27-E9, were capable of

competing this interaction (Fig. 4, B and C).
Strong competition could also be observed
with the known SLC29A1 inhibitor nitro-
benzylthioinosine (NBMPR) (Fig. 4C). Second,
we confirmed enrichment of SLC29A1 by com-
petitive C27 pulldowns coupled to Western
blot analysis (Fig. 4D). Competition could be
observed with several derivatives and known
SLC29A1 inhibitors (NBMPR and dipyridamole)
but not with an acetylated, non-CRF–containing
version of C27 (fig. S3A). To enable further de-
sign and derivatization of C27 elaborates, we
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Fig. 4. Discovery of an SLC29A1 inhibitor. (A) Volcano plot for fragment
C27 (as shown in Fig. 3A). (B) Scatter plot for the competitive chemoproteomics
experiment for C27-E9 (as shown in Fig. 3D). Competed proteins that lack
sufficient enrichment are displayed in blue. (C) Heatmap showing the top 50
competed protein targets and competition ratios for C27-E5, C27-E7, C27-E8,
C27-E9, and NBMPR (as shown in Fig. 3E). (D) Competitive pulldown with C27
elaborates coupled to Western blot analysis. PD: pulldown; Dipyri., dipyridamole.
(E) Chemical structures of C27-F and the development of fragment C27-E9 over

C27-E9.1 to C27-E9.2. Docking model of C27-E9.2 (blue) in SLC29A1 (Protein
Data Bank ID: 6OB6) (35); residues within a radius of 5 Å are shown in gray.
(F) Competitive pulldown as shown in (D) with elaborated competitors.
(G) Functional uptake assay for SLC29A1. KBM7 cells were cotreated with the
indicated concentrations of test compound (NBMPR or C27-E9.2) and the indicated
concentration of gemcitabine. Cell viability was determined after 48 hours of
treatment. A nonlinear fit function [four parameter logistic (4PL) sigmoidal curve fit]
was applied with error bars indicating standard deviations. Triplicate analysis.
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turned to in silico iterative docking studies using
NBMPR in its crystal structure with SLC29A1 as
a template (Protein Data Bank ID: 6OB6) (35).
This approach revealed that the pyridopyra-
zine core of C27-E9 aligned with the adenine
core of NBMPR, whereas the N-methylpyrazol-
methylcyclopentamine elaboration overlapped
with the ribosemoiety (fig. S3B).Thep-nitrobenzyl
ring of NBMPR was shown to interact with a
hydrophobic pocket present only in SLC29A1
and not in other members of the SLC29 family,
which harbors Gly154 rather than serine in the
analogous position (35). To access this pocket, we
designed C27-E9 to have the same p-nitrobenzyl
extension at position 3 of the pyridopyrazine
core, while removing the N-methylpyrazole
for synthetic feasibility to furnish C27-E9.1 and
C27-E9.2. Docking C27-E9.2 into SLC29A1 in-
deed suggested that it acquires a bindingmode
similar to that of NBMPR (Fig. 4E). In com-
petitive pulldown experiments, C27-E9.1 was
equipotent with the parental C27-E9, but C27-
E9.2 displayed enhanced competition com-
parable to NBMPR (Fig. 4F). SLC29A1 is also
the main transporter of a variety of toxic
nucleoside anticancer drugs, such as cytarabine
and gemcitabine (38, 39). We thus set out to
develop an uptake assay in which SLC29A1
inhibition can bemeasured through shifts in
cellular viability upon cotreatment with gem-
citabine (fig. S3C). In agreement with com-
petitive pulldown experiments, C27-E9 and
C27-E9.1 exhibitedminimal rescue togemcitabine-
induced cytotoxicity, whereas C27-E9.2 showed
a dose-dependent effect in the low-micromolar
range, comparable to NBMPR (Fig. 4G and
fig. S3D).
Having established that we could prioritize

individual fragment-protein interactions to fur-
nish competitive and often functionally conse-
quential ligands, we next wanted to evaluate
how the global dataset of tens of thousands of
fragment-protein interactions couldbe leveraged
to discover patterns or general principles of how
fragments interact with the proteome in native
biological systems. In this context, two proper-
ties stood out: first, ligand promiscuity, second,
and interrelatedly, the association of a specific
FFF (and, by extension, specific chemical prop-
erties) with certain cellular locations, protein
families, and protein functions.

Fragment promiscuity prediction

We have already observed that analyzed frag-
ments fall on a broad spectrum of selectivity
and promiscuity profiles. To model this dif-
ferentially promiscuous behavior, we first lev-
eraged the aforementioned FFF descriptors
and coupled them to a fast, lightweight, and fully
automated ML algorithm for binary classifica-
tion (Fig. 5A and SM, materials and methods).
In brief, we first labeled screened fragments

as promiscuous (1) or nonpromiscuous (0), ac-
cording to thresholds in protein-interaction

counts. Then, we used a transformer-basedML
model (TabPFN) to map a compound’s FFF de-
scriptor to a classification score (0 or 1) (40).
TabPFN is a fully learnedmodel that approx-
imates Bayesian inference and requires no
hyperparameter tuning, making it straight-
forward to obtain performant ML classifiers
based on our chemoproteomics profiling data.
Through this approach, promiscuity models
can also inform on the specificity of the bound
proteins. For instance, a relatively specific
fragment might only ligand “frequent-hitter”
proteins, whereas a more promiscuous frag-
ment could be enriched in binding to proteins
that are very rarely enriched. (fig. S4A). Accuracy
of our ML-based promiscuity prediction models
was measured in 80:20 train-test splits and
yielded satisfactory AUROC (area under the
receiver operating characteristic) scores of ~0.8
(Fig. 5B and fig. S4A). A promiscuity prediction
module is available through our ligand discov-
ery resource. Next, we wanted to validate the
MLmodels experimentally and further investi-
gate their interpretability, aiming to connect
promiscuity predictions with a set of tangible
and explainablemolecular features. To accom-
plish this, we comprehensively predicted the
binding promiscuity of >5500 FFFs (Fig. 1A and
table S3). We implemented a simple tree-based
method to explainMLmodel outcomes using a
set of 100 interpretable physicochemical prop-
erties selected from an initial pool of >1600
features on the basis of their importance to the
model outcome (41). We laid out these top 100
features in a 10 × 10 tile according to their
intercorrelation (fig. S4B), resulting in easily
recognizable regions related to lipophilicity,
size, aromaticity, and other attributes (41). Im-
portance of each property was estimated with
Shapley value scores, which quantify the im-
pact of a given property on the overall predic-
tion outcome, revealing outsized contributions
of LogP and the number of aromatic sp2 car-
bons (Fig. 5C) (42). Ranking the virtually as-
sayed 5680 FFFs by predicted promiscuity scores,
we acquired six predicted promiscuous and six
predicted nonpromiscuous FFFs for experimen-
tal validation, aiming to cover a range of chem-
ical properties and LogP values (table S3). Both
in-gel fluorescence (Fig. 5D) and chemoproteo-
mics readouts are in strong agreement with the
predicted scores (Fig. 5, E and F, and fig. S4C).
TheMLmodels could correctly label challenging
cases, such as promiscuous fragments with
modest LogP, as well as nonpromiscuous frag-
ments in the high LogP range (Fig. 5G).

Functional and spatial target signatures

Enrichment analysis of fragment interactomes
can reveal the preferential binding of fragments
to certain protein families. The fragment profile
of C391, for instance, pointed to ligand binding
to CDKs (Fig. 3, B and C). Moreover, enrich-
ment of proteins corresponding to a specific

cellular compartment could provide evidence for
intracellular fragment partitioning. For example,
we found that fragment C310 strongly interacts
with the autophagy receptors SQSTM1 (p62),
NBR1, and TAX1BP1, thus making it, in theory,
an interesting candidate to modulate autopha-
gic clearance (43, 44). However, ensuing protein
set enrichment analysis of the C310 interactome
revealed a pleiotropic enrichment for other pro-
teins localized in the autophagosome and lyso-
some (fig. S5, A to C). Based on this interactome
analysis, we surmised that the enrichment of
autophagy receptors through C310 was likely
an indirect consequence of fragment partition-
ing rather than the consequence of a char-
acteristicmolecular recognition. Indeed, neither
recombinant SQSTM1,NBR1, norTAX1BP1 could
be labeled by in-gel fluorescence scanning as-
says (fig. S5D), whereas confocal microscopy
furnished clear evidence of lysosomal accumu-
lation of C310 that also extended to accumu-
lation in autophagosomes (fig. S5, E and F).
Hence, proteomics-based interactome profil-
ing allowed us to reveal intracellular fragment
partitioning.
Motivated by these findings, we have pro-

vided extensive functionalities to analyze FFF
enrichments and to build ML models for pro-
tein sets of choice in our ligand discovery re-
source. For illustrative purposes, and to offer a
bird’s eye view of our interactome, we aimed
at segregating FFFs on the basis of 10 coherent
and frequently observed groups of enriched
proteins. We focused on gene ontology (GO)
molecular functions (MF) and cellular com-
ponent (CC) terms, opting for a simple analysis
in which only one or a few interactome sig-
natures are assigned to eachFFF.We first pruned
FFF interactomes, retaining only nonpromis-
cuous proteins accounting for MF and CC en-
richment signals. This favored subsequent MF
and CC coherence of the emerging signatures
and narrowed down the analysis to a subset of
970 informative proteins. Next, we applied non-
negative matrix factorization (NMF) to de-
compose the sparse fragment-protein matrix
into a fragment-signature (W; 407 × 10) and a
signature-protein (H; 10 × 970) matrix. W de-
notes the association of each fragment to each
signature (Fig. 6A and table S4), and H indi-
cates the protein composition of the signatures
(table S5). This procedure revealed a global
structure in our FFF profiles, displaying groups
of 20 to 40 (5 to 10%) fragments with relatively
specific signature patterns (Fig. 6, B and C).
Subsequent unbiased enrichment analysis al-
lowed us to assign biological meaning to the
respective signatures. For instance, signature
7 was clearly enriched in tubulins (TUBB),
signature 1 was characterized by RNA binding
proteins, and signature 2 consistedmainly of
lysosomal proteins (Fig. 6D). Next, we asked
whether ourMLmodeling framework could be
employed to predict interactome signatures for
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Fig. 5. Fragment promiscuity prediction. (A) Scheme of the ML methodology,
consisting of a transfer-learning approach in which (1) the FFF chemistry is
captured in an FFF descriptor based on a large compound collection (our
screened FFFs, Enamine stock FFFs, and Enamine REAL on-demand FFFs;
>250,000 in total), which is, in turn, (2) the input layer for binary (1/0) tasks
such as promiscuous/nonpromiscuous classification. ML model training is done with
screening data (407 compounds). Then, the trained pipeline can be applied
prospectively, for example, (3) across Enamine stock FFFs (~6000), to obtain a
classification score. For interpretability, (4) surrogate modeling can be done using
human-readable molecular features and a tree-based algorithm such as LightGBM
(light gradient boosting machine) coupled to Shapley value analysis. We built
these interpretable models based on the prescreened Enamine stock library (SM,
materials and methods). PhysChem, physicochemical properties; ECFP, extended-
connectivity fingerprints. (B) Binary classification performance in 10 stratified
80:20 train-test splits. The current task corresponds to a promiscuity cutoff of
100 proteins. The average ROC curve across splits is shown, shaded with the
standard deviation interval. TPR, true positive rate; FPR, false positive rate.
(C) Shapley values observed for 20% (test) Enamine stock fragments. Molecular
features are ranked by absolute sum of Shapley values (impact on prediction)

across evaluated compounds. The color scale indicates the feature value (high is
red; low is blue). Thus, high (red) LogP values have a positive impact on the
prediction score, meaning that they contribute to promiscuity. ETA, extended
topochemical atom. (D) In-gel fluorescence assay for six predicted promiscuous
(red) and six predicted nonpromiscuous (blue) FFFs. (E) Correlation between
predicted promiscuity (y axis) and observed promiscuity (x axis) in prospective
chemoproteomics assays for 35 FFFs. The predicted promiscuity score is the
sum of all scores across all individual promiscuity predictors. FFFs presented in
(H) are highlighted in red and blue. (F) Individual promiscuity (Prom.) predictor
scores for the 12 highlighted FFFs, arranged in a 3 × 3 grid as follows. Rows
stratify proteins by specificity, measured as the number of fragments per protein
[bottom, less than 4 FFFs (1%); middle, between 4 and 39 FFFs; top, 40 or more
FFFs (10%)]. Columns count the number of proteins in each of the specificity
categories, + being “at least a few” proteins and +++ being “many.” Thus, the top
right of each FFF shows fragments that bind to many (+++; 200) nonspecific
(40+ FFFs) proteins. (Bottom row) Levels are +, 5; ++, 10; and +++, 50. (Middle
row) Levels are +, 10; ++, 50; and +++, 100. (Upper row) Levels are +, 50; ++,
100; and +++, 200. (G) Interpretability of predictions. 100 molecular features are
organized in a 10 × 10 tile, such that neighboring positions correspond to
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novel FFFs, thus anticipating their behavior in
native biological systems. For 80:20 train-test
splits, 6 of the 10 signatures could be predicted
with AUROC accuracy >0.7, of which 3 showed
AUROC >0.8 (Fig. 6E). Signature 2, cor-
responding to lysosomal proteins, stood out as
a highly predictable trait (AUROC >0.9) that
we could validate experimentally for 13 addi-
tionally acquired fragments by confocalmicros-
copy (fig. S5G). Lysosomal accumulation is a
well-described phenomenon displayed by many
small molecules, particularly those hydrophobic
and weakly basic in nature, including clinically
approved drugs (45–47). Consistently, profiled
FFFs with interactomes that enrich signature
2 indeedpredominantly feature a basic (tertiary)
amine (as for instance C310, fig. S5A), as domost
of the predicted fragments (table S3). Together,
these results provide evidence that chemopro-
teomics profiling can correctly capture small-
molecule behavior in intact cellular systems.
Moreover, they demonstrate that higher-order
fragment behavior—such as partitioning into
cellular compartments—is reflected in differ-
ential interactome signatures and that asso-
ciatedMLstrategies canpredictwhich fragments
will share such features and hence will be-
have similarly in a cellular context. Motivated
by data around the well-known phenomenon
of lysosomal partitioning, we next set out to
explore the further predictive power of other
signatures.
To this aim, we collected 16 proteomics pro-

files available in the public domain, alongside
a prospective validation set of 35 newly pur-
chased Enamine stock FFFs (16, 18). We then
applied ourML inference pipeline to predict sig-
nature association on the basis of FFF chemical
structure alone. Globally, we observed a strongly
significant coincidence (empirical P value <10−5)
between predicted signatures and top-ranked
proteins in the FFF interactomes (SM,materials
and methods, and fig. S6, B and C). Removing
signature 2 from the analysis (arguably themost
trivial task) still resulted in a significant trend
(fig. S6C). In Fig. 6F and fig. S7, we depict some
illustrative cases. For example, JN00026 and
JN00033 fragments fromWest et al. were suc-
cessfully predicted to enrich transmembrane
transporters (signature 6), whereas three of
the FFFs from Parker et al. (PRK4, PRK6, and
PRK7) enriched proteins related to RNA bind-
ing (signature 1) (16, 18). Other notable results
include compound V0019, predicted to enrich
signature 1 and signature 3 (proteasome com-
plex); PRK6, a compound predicted to interact

with intrinsically disordered nuclear proteins
(signature 5); and V0051, an FFF enriching
several mitochondrial envelope proteins (sig-
nature 9).
The predictive capabilities of the ligand

discovery resource go beyond the predefined
set of signatures, extending to thousands of
potential ML modeling tasks. To enable the
assembly of bespoke MLmodels, we added an
“on-the-fly” modeling asset that can build
models based on user-defined list of proteins
(or subsets thereof). For example, focusing
on SLCs, we could predict the tendency of
34 newly screened compounds to interact with
this transporter superfamily (Fig. 6G). OurML
models also assigned higher scores to known
small-molecule SLC binders as compared with
matched, randomly chosen control compounds
(Fig. 6H). Collectively, this provides evidence
that models generated on the basis of our che-
moproteomics data empower the prediction of
fragment behavior and engagement in a native
cellular environment.

Discussion

Our experiments yielded a diverse catalog of
fragment-protein interactomes, substantially
expanding the ligandable proteome. Among
proteins liganded through our chemoproteo-
mics surveyweremore than 2000 proteins that
previously lacked known ligands (21). Careful
investigation of background labeling and re-
moval of promiscuous proteins and fragments
informed a pruned interactome of strong and
selective fragment-protein interactions that
revealed actionable starting points for ligand
discovery, as exemplified by the successful devel-
opment of compounds targeting SLC29A1, DDB1,
and CDK2 with focused synthetic efforts.
The scale of our study has furthermore em-

powered an analysis of ligand binding that
goes beyond individual proteins toward enriched,
biologically coherent patterns of protein targets
in the overall interactome of a fragment. These
interactome signatures can, for instance, be
reflective of binding to specific protein families
or of partitioning of the fragment into specific
cellular compartments. To evaluate the predic-
tive power of the recorded fragment interac-
tomes, we built ML models that can inform
on principles of fragment behavior in native
biological systems. We focused our efforts on
(i) predicting fragment promiscuity, (ii) re-
vealing higher-order functional signatures
across fragment interactomes, and (iii) provid-
ing a flexible framework for modeling lower-

order annotations, such as protein families
or localization terms. Global features such as
fragment promiscuity could be predicted and
prospectively validatedathighaccuracy (AUROC
>0.8). For the more nuanced interactome sig-
natures, we found that certain signatures can
be predicted with similar accuracy. We bench-
marked this concept on the well-validated con-
cept of lysosomal accumulation, but we can
also extend it to other, nonobvious aspects of
fragment behavior, including binding to pro-
tein families such as SLCs. Given the interest in
drugs that partition into subcellular structures
such as nuclear condensates, we anticipate that
the presentedmodels offer a rational framework
for future ligand design efforts (48). Along similar
lines, we foresee that integrating the presented
proteome-wide binding data with RNA-binding
propertieswill further illuminateourunderstand-
ing of small-molecule behavior in complex bio-
logical systems (49, 50). Additionally, we expect
that ourmodels will enable the rational design
of bespoke chemical libraries to target specific
protein families, such as SLCs and other trans-
porters, thus further streamlining the devel-
opment of novel medicines for this important
but frequently neglected protein class (33).
Despite the depth of our survey, several limi-

tations need to be considered. Even though we
designed the more than 400 FFFs to be highly
diverse, these efforts are insufficient to cover
the chemical space in a saturating manner
(51, 52). Another limitation lies in the assayed
proteomic space. Because all experiments were
conducted in HEK293T cells, we lack data for
proteins expressed in a tissue-restrictedmanner.
The proteomics-based readout that we used has
certain inherent technical limitations andbiases,
including detectability issues for low-abundance
proteins. Moreover, in contrast to recent itera-
tions, our workflow does not allow determina-
tion of the fragment binding site on the target
protein (53). This can potentially complicate
fragment elaboration and ML applications.
Likewise, fragment optimization can be stymied
by low stoichiometry of target engagement,
which complicates the identification of com-
petitive elaborated fragments. This might
explain why certain signatures weremore chal-
lenging to predict despite being functionally
coherent (e.g., signature 7, tubulin binding).
With additional ligandability maps and the
advent of other proteome-wide strategies to as-
say ligand-protein interactions (54–56), we anti-
cipate that increasingly fine-grained interactome
signatureswill be detectable andpredictable and

correlated features (SM, materials and methods). (First row) Cells are colored
by molecular property value (high is red; low is blue). As shown, selected
compounds have diverse feature profiles. Two relevant features, namely
Wildman-Crippen (W.C.) LogP and number of sp2 carbons, are highlighted to
ease readability (details provided in fig. S4B). (Second row) Shapley values

of the features are shown, highlighting the most relevant features for the
predicted outcome. Big red triangles pointing upwards denote a positive impact;
big blue triangles pointing downwards denote a negative impact. Small or
inexistent triangles indicate negligible impact. (Bottom row) Structures of the
12 compounds.
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Fig. 6. Identification and predictability of protein-interactome signatures.
(A) Scheme of the signature modeling pipeline. The full screening matrix is
filtered by MF and CC protein set enrichment analysis to retain, for each FFF,
only proteins that are at the leading edge of an enrichment signal, resulting in
biologically coherent fragment interactomes. The filtered, sparse matrix is
decomposed with NMF into a 407 × 10 FFF-signature matrix and a 10 × 970
signature-protein matrix. Frags., fragments; Signs., signatures. (B) View of the
fragment-signature matrix, hierarchically clustered. Association between
fragments and signatures is depicted with the blue color scale (relevance score).
(C) UMAP projection of the FFF space in 2D, based on interactome profiles.

Proximal FFFs (dots) have similar interactome profiles. Nine illustrative fragments
are highlighted, with the pie chart representing their association to signatures.
Colors match the legend shown in (B). (D) Top 15 relevant proteins per signature.
The colored portion of the bar shows the association of each protein to the signature
of interest, and the gray portion measures association to other signatures.
Therefore, bars with small gray areas indicate specific associations. The colored
boxes below each signature provide a high-level description of that signature
(fig. S6A). (E) ROC curves for the ML model validations, performed 10 times in
80:20 train-test splits. The line is the mean curve, and the shade spans the
standard deviation. (F) Prospective validation examples. The y axis ranks top
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hence further increase the efficiency of wet- and
dry-lab cycles. An ultimate goal of these efforts
could be the prediction of target proteins from
an input chemical structure alone to accelerate
small-molecule discovery in the currently un-
liganded proteome.

Methods summary

Full details of the methods are described in
the supplementary materials and are summa-
rized here. Chemoproteomics experiments were
performed with a library of 407 chemically di-
verse chemical fragments from Enamine’s
catalog (harboring a diazirine moiety for
photocrosslinking and an alkyne functionality
for click reaction and enrichment) inHEK293T
cells and analyzed by TMT 16plex-based MS
(16, 57). Fragment-protein interactions of in-
terest were followed up with competitive
fingerprinting experiments. Briefly, cells were
pretreated with a 20-fold excess of elaborated
structures followed by fragment treatment and
subsequent processing through our regular
chemoproteomics pipeline. Validation experi-
ments included competitive chemical pulldown
experiments with Western blot analysis, dock-
ing studies (58–63), production (64) and in vitro
labeling of recombinant proteins with fragment
probes, confocal microscopy to investigate sub-
cellular localization of fragments, and functional
cytotoxic uptake assays for SLC29A1 performed
using cell viability as readout. In-gel fluorescence
analysis of fragment-labeled proteomewas done
with TAMRA-azide to survey the promiscuity of
fragments andwasused as anorthogonal follow-
up to promiscuity predictions (16).
Protein set enrichment analysiswas achieved

with Molecular Signatures Database (MSigDB)
GOMF and CC annotation datasets, as well as
PANTHER families and IDG categories, among
others (22, 65, 66). Interactome signature dis-
covery relied on using the Evolutionary Scale
Modeling (ESM)–1b protein sequence embed-
dings and Bioteque CC embeddings (67, 68).
For interactome signature discovery, GO terms
were used to retain functionally coherent pro-
teins per fragments, followed by NMF for
fragment-protein matrix decomposition. The
MLmethodology included pretraining of the
FFF descriptor with a blend of topological
and physicochemical descriptors, (41, 69, 70)
binary classification with TabPFN models
(40, 71), and interpretability of promiscuity
predictions using Shapley value analysis
(42, 72, 73). A fully automated ML modeler is
provided as part of the ligand discovery web
resource.
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